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Abstract

This paper has related silver halide (AgBr, AgCl, BAgl)
band gap energies to the common reference vacuum level
and also the standard potential for redox couples referenced
to the normal hydrogen electrode. This relationship suggests
the thermodynamic limitations for photoreactions that can be
carried out with charge carriers in the photographic silver
halide microcrystals and other semiconductor materials of
known band gap values. The author has not calculated mean
field interactions such as the various aspects of intercalation
or interaction energies that a given ion would feel if adjacent
sites were full. Iridium III, rhodium III, and iodide energies
from literature values are reasonably placed within the band
gap of AgBr in order to support the understanding of
photophysical electron transfer within heterogeneous, two-
phased photosensitive systems and other imaging systems.

Introduction

In general, an electron transfer may occur between a
semiconductor electrode and a donor or acceptor in solution.
The more specific case at hand is the photoexcitation of a
silver halide microcrystallite and the transfer of the electron
from the solid phase, the electrode, which serves as an
electron sink or source. Alternatively, the redox reaction
could take place in or at the interface of the
nanoheterogeneous system or quantum cluster. The solid
state properties of these imbedded aggregates depend
strongly on the cluster size and the environment immediately
surrounding these clusters; i.e., intercalation and mean field
expressions for short-range crystal lattice. The charge at the
interfaces controls the thermodynamics and kinetics of the
heterogeneous redox reactions. The electrical field due to
these charges at the interface is the major difference with
respect to homogenous analogues. The photoexcitation with
ensembles of relatively small numbers often fail to
statistically represent all the host aggregates that may remain
isolated with respect to the reaction time scale; thus, a
variation of activation energies. Another interesting feature
of these heterogeneous systems is the localization or position
restriction of the epitaxial clusters in or upon the surface of
the host crystal; e.g., faces, corners or edges of the crystals.
This paper describes an attempt to assemble a large
quantity of data and present some possible correlation with
respect to several potential photographic or imaging systems.

Discussion and Results

The discussion centers around the Fermi level of a redox
electrolyte expressed in terms of electrochemical potentials
under standard conditions and the relation

EY(redox) = g yn- — yt'y — nF gsolution

( d) , Galvani potential) (1)

to the standard redox potential of the A°/A™! redox couple.
The normal hydrogen electrode (NHE) in electrochemistry is
used as a reference. The Gibbs free energy A Gy of the

solution reaction describes the redox potential
Enue (A°/A™) or
%H2+A"—>A’“+nH* (2)
under standard conditions, where
AGNHE = —nFENHE (3)

The vacuum or absolute potential scale is sometimes utilized
instead of expressing redox potentials with respect to NHE.
In the former case, the equilibrium

nE e + A°=A" (4)

where

AG:ac = Hyr—H4= “”FE:ac (3)

assuming the chemical potential of the electron at rest in
vacuum, at infinite distance from the electrodes is zero.
Comparisons of Egs. 1 and 5 yields

E¥(redox) = —nFE . — nF gsolution (6)

which shows the Fermi level of the electron in solution is not
identical with the redox potential expressed on the vacuum
scale. In the field of photoelectrochermstry, it is frequently
asserted that these quantmes are identical.' Bockris and
Khan® pointed out that only in the unhkely case where the
inner solution potential, Galvani potential, is zero does the
condition E f( redox )_ -nFE hold as shown in Eq. 6.

Relating Em to ENHE is accomplished by adding
Eq. 7to
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He-vas + (H)oter = (% Hvater 7)

Eq. 2 and obtaining Eq. 4 for which the standard free energy
is known to be -n(4.5 + 0.3)eV.> In order to convert a redox
potential measured against the normal hydrogen electrode
(NHE) to that expressed on the vacuum scale, the following
relation is given, Eq. 8. A recent series of papers discussing
conversion of

Evac = Engg + 4.5 8

relative to absolute potentials are listed. “®

The increasing order of positive potentials
beginning with 0.0 and ending with +5.5 V describes the
ease of reduction; whereas the reduction reactions having
reduction potentials more negative than that of the standard
hydrogen electrode, beginning with 0.0 and ending with —1.5
V, describes the increasing difficulty of reduction. The
standard electrode potential of an electrode reaction
E°(M""/MP°) is the standard potential of a reaction in a cell
whose left-hand electrode is a hydrogen electrode (IUPAC)
convention. The convention is noted by E°(S/S?) = -0.47627
V or E%S,2/Sn) = -0.1364 V with the temperature at
298.15 K under standard conditions of concentration; e.g.,
C°is1mol L', C°—> Oanda), =1.

The energy levels for the conduction bands of
AgBr, AgCl, and BAgl are 4.57, 4.59 (3% iodide), 4.51, and
3.90 eV, whereas the valence level measurements for AgBr,
AgBrg-,I3, AgBr74126, AgCl, AgI indicate 7.14, 7.04 (3%
iodide), 6.90 (26% iodide), 7.55, and 6.60 eV, respectively
(Figures 1 and 2)™* (dashed lines). Normal hydrogen
electrode potentials have been taken from the literature *
However, solid state analysis and photographic sensitization
experiments (solid lines) have yielded 3.30, 3.30, and 3.90
eV for conduction band determinations. The valence energy
levels for the earliest measurements were taken to be 5.87,
6.50, and 6.75 eV, respectively. The band gap for several
semiconductors have also been taken from the literature.*
But using the values published by Tejeda et al.” (AgCl 3.1
eV, Agl 3.7 eV) reverses the relative positions of the
conduction bands of the first mentioned data of Bauer and
Spicer.”

The solid state properties of imbedded aggregates
depend strongly on the cluster size and the environment
immediately surrounding these clusters and may be described
by terms within an overlap wavefunction model of the holes
and electrons between different atoms or ions, "’

Eg(R) = Eg(R =00) +

2n
Wl o 1 18 e~ (S
- = — _.z = ()
ZRZ{ " ] &R +RH"”(1J @

*
m e” m p

Figure 1 shows the energy of the lowest excited electronic
state (i.e, the conduction band plus the transition
recombination energy at the peak photoluminescence
wavelength) versus the small iodide cluster diameter (R).
The optical frequency dielectric for Agl (486 nm), £ = 5.419,
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is inserted in the Coulomb attraction term and the third
solvation gnergy, loss term is not applicable. The effective
masses m __, m,  of electrons and holes are approximated
from literature values by comparing semiconductor
properties. Silver bromide effective masses have been used
as a reference. In general, it is shown that the smaller cluster
size, the greater the band state; the wider the band, the
smaller the effective mass.

Figures 2 and 3 show band edge positions of
semiconductors®* with respect to AgBr, AgCl, and BAgl.
The positions are given both as potentials®® versus NHE
and as energies versus the electron in vacuum. The dashed
lines are of data from different analytical procedures in
comparison to the solid lines as noted previously.

Figures 4-12 are graphic interpretations of band
positions of AgBr, AgBr,I, AgCl, and BAgl with respect to
NHE potentials®*® and as energies versus the electron in
vacuum. The band gap positions are also related to redox
couples in aqueous solutions.'”® The reduction by the
photoexcited conduction band electron can take place when
the redox couple lies below the bottom of the silver halide
conduction band edges; and oxidation occurs by a valence
band hole when the couple lies above the top of the valence
band edge. Likewise, each of the semiconductors (Figures 2
and 3) is subject to the photo-oxidation and reduction
processes similar to the silver halide materials in order to
present new imaging systems.

The experimental data of I, A-H solid lines
describes the AgBr,I cryogenic photoluminescence involving

I; in the region ~500 nm to 620 nm originating from the
conduction band position of 3.30 eV."> The dashed lines
represent conduction energy band reference levels for the
recombination emission to the iodide cluster centers (also
dashed lines A-H). Recently, Ehrlich has related an iodide
shallow electron trapping center, 0.065 eV, beneath the
conduction band of AgBr,I microcrystallites by activation
energy determination from low-temperature
photoluminescence measurements.'® Also noted'” within the
AgCl, I, clusters were the recombination
photoluminescence emissions of several complexes between
5.63 and 5.72 eV. Multitudes of redox couples are available

within this range as seen in column I" #31.

n-

Conclusions

1. The author has related silver halide band gap energies to
the common reference vacuum level and also indicated the
standard potential for redox couples referenced to the
normal hydrogen electrode. This relationship suggests the
thermodynamic limitations for photoreactions that can be
carried out with charge carriers in the photographic silver
halide microcrystals and other semiconductor materials of
known band gap values.

2. If reduction of a chemical species, quantum cluster,
nanocluster, or aggregate in or on the silver halide host is to
be reduced, the conductive band position of the silver halide
(which is photoexcited) must be positioned above the
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relevant redox level to form a metastable state with the silver
halide defect lattice.

3. Development of the silver-complex latent image may be
internal to the grain or upon the surface at the interface of
the aggregate or cluster.

4. The lowest unoccupied molecular orbital (LUMO) of the -

photon-absorbing adsorbed species cluster, or core
semiconductor shelled or epitaxially placed upon silver
halide, must be energetically positioned above the
conduction band of the silver halide for photocatalysis of
silver halide to occur.
5. Oxidation by a valence band silver halide hole occurs
when the nonexcited couple (HOMO) highest occupied
molecular orbital or semiconductor valence band lies above
the photoexcited silver halide valence band.
6. Literature values gﬁSR) of shallow electron traps 0.446,
0.320, and 0.460 eV" of iridium III hexachloride under the
onductlon band (also 0.2 eV beneath (TSC) the conduction
band®®) would not distinguish the validity of the band gap
measurements due to the activation energy reference to the
conduction band. An activation energy also determined the
positioning of the shallow trap at an emitting iodide center,
0.065 eV beneath the AgBr conduction band.
7. RR(CN))"/Rh(CN)$™ (E° = 0.9 V) show deeper
electron trappmg than experimental iridium III hexachloride,
which correlated with photographic results.
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Figures 2 and 3. The band postions of semi-conductors with respect to AgBr, AgCl, and BAgl. The positions are given both
as potentials versus NHE, and as energies versus the electron in vacuum. The dashed lines are of data from different
analytical procedures or state of the materials than the solid lines as noted previously.
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Figures 4-12. Graphic interpretations of band positions AgBr, AgCl, and BAgl with respect to NHE potentials and as
energies versus the electron in vacuum. The band gap positions are also related to different redox couples in aqueous
solutions.
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